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Abstract

A general derivation for obtaining bearing dynamic coefficients in polar coordinates is presented. It is
shown that this derivation is simple and consistent with the commonly used formulae for the linearized
stiffness and damping coefficients. What is more important is that the physical meaning of this derivation is
clearer and simpler.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The existing definitions of the linearized stiffness and damping coefficients in polar coordinates
are derived from the Taylor series expansions of the radial component f, and tangential
component fy of the fluid force f (Fig. 1) and neglecting higher than first order terms. There are
two commonly used approaches for arriving at definitions of these coefficients (see Section 2).
However, they lead to inconsistencies in the final expressions for the stiffness and damping
coefficients. Especially, when applied to infinitely short bearings, the inconsistencies become so
obvious.

This paper presents a more general and straightforward derivation of bearing stiffness and
damping coefficients in polar coordinates. The final expressions for the stiffness and damping
coefficients are consistent with those in both Refs. [1,2].

*Corresponding author. Tel.: +12255789192; fax: + 1225578 5924.
E-mail address: khonsari@me.lsu.edu (M.M. Khonsari).

0022-460X/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/.jsv.2005.04.019


www.elsevier.com/locate/jsvi

J. K Wang, M.M. Khonsari | Journal of Sound and Vibration 290 (2006) 500-507 501

Nomenclature ki (%1? ky (i,j = & )
L bearing length, m
by damping coefficients of fluid film bearing, 0, center of the journal bearing
Ns/m, (i,j =& ¢) (i is the direction of 0; center of the journal
the force, j is the direction of the speed) R journal radius, m
by by =) ¢ times
. X the coordinate in the horizontal direc-
C radial clearance, m tion
Je radial cpmponent of the fluid fgrce, N y the coordinate in the vertical direction
1o tangential component of the fluid force, . . .
N u lubricant viscosity, Pas
ki stiffness coefficients of fluid film bear- @ FURIRgS 5P ced .Of the rotor, rad/s
. .. .. . . e eccentricity ratio
ing, N/m, (i,j = ¢, ¢) (i is the direction ¢ attitude anele
of the force, j is the direction of the £
displacement)

2. Existing inconsistencies between two kinds of existing definitions

Fig. 1 shows the sketch of the decomposition of the fluid force in journal bearing.

In Fig. 1, O, is the center of the bearing; O is the steady-state equilibrium position of the
journal center; O; is the dynamic position of the journal center; ¢ and ¢ are the eccentricity ratio
and attitude angle of the journal center, respectively; subscript s represents the steady-state
equilibrium position; C is the radial clearance; f, and f, are the radial and tangential components
of the fluid forces f in journal bearing; x and y are the coordinates in the horizontal direction and
vertical direction, respectively; e, and ey are the unit vectors in radial and tangential directions,
respectively. Referring to Fig. 1, the fluid force f is
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Fig. 1. Sketch of the decomposition of the fluid force in journal bearing.
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The two commonly used definitions mentioned in Section 1 are both based on the same Taylor
series expansions of the radial component and tangential component of the fluid force f separately

while neglecting higher than first-order terms as follows [1-3].
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The above equations can be written in the following form:
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where all the first-order derivatives are evaluated at the steady-state equilibrium position

(85> Ds)-

2.1. Direct deduction of the stiffness and damping coefficients

One of the approaches in the existing literature arrives at the definition of the stiffness
coefficients (k;) and damping coefficients (b;) from the Taylor series expansions—Eq. (2)—

directly [3]:

fg - (fa)s kac ksd) CAc¢ bzs
fo—=Up)s )~ koo koo |\ CeAp | | by,
where
Lo, o,
kw k8¢ Coe Cs@d) d bas b8¢
koe koo | T |y Wy | T g buy
Coe Cedg

]:

by | [ CA:
by ( CeAd ) ’ )
of o,
S Co: Ceod
afd> afd) (4)
Coé Ced



J. K Wang, M.M. Khonsari | Journal of Sound and Vibration 290 (2006) 500-507 503
2.2. Transformation approach for deriving the stiffness and damping coefficients

From Fig. 1, the following transformation is used [1,2]:

1 cosAp —sinA¢\ [ f,
Sy ~ | sinA¢  cosA¢ fo | ()

where f, is the component of the fluid force f in the same direction as the fluid force component
(f), at the steady-state equilibrium position, and f;b is the component of the fluid force f in the
same direction as the fluid force component (fd>) at the steady-state equilibrium position.

For a small perturbation, A¢ <« 1, so that cos Aq’) ~ 1, sin Ap = Ag.

Using these two approximations, Eq. (5) can be rewriten as

()= () ()

Then, the following definitions of the stiffness and damping coefficients are developed [1,2].

L= | = koo koo |\ et |~ [ bge oo |\ Cond ) ©
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2.3. Inconsistencies between two kinds of existing definitions
From Egs. (4) and (7), it is very clear that some inconsistencies between the definitions of kg

and kg, exist. The second definitions of k.4 and kg4 each has one more coupled term than does
the first set of equations presented in Section 2.1.

3. A new derivation of the definitions of stiffness and damping coefficients

Taking the derivative of both sides of Eq. (1) with respect to time ¢ yields:

df dfg f¢ de¢
a dl £+E +fp dl f(/) (8)
where
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The derivatives of unit vectors e, and e, are [4]

dec_do
de _dr ?
de, __do, 1o
a At

Substituting Egs. (9) and (10) into Eq. (8) yields
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Simplifying further, we obtain

6fgdp of, d¢ af de  of,d¢
<¢ f/>> de dt ' ¢ dr

dr e dr
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For a very short-time interval Az when a small perturbation is applied to the journal that was in
steady-state equilibrium position (ss, d&)a Eq. (11) can be approximated as follows through

multiplying the two sides by Az.
a a

oo S @]
a—:A8+<a$+fg>A¢+ — A ad‘qus
The fluid force at the steady-state equilibrium position (e, ¢,) is
(7o),
f, = [es e¢] [(fb)] (13)

Substituting Egs. (1) and (13) into Eq. (12), yields
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1.e.,
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Rewriting Eq. (14), one arrives at the following equation:
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Now, the stiffness and damping coefficients can be defined as follows:
fo=(10); kw ki ][ CAe by by | [ CA: g
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The final expressions for the stiffness and damping coefficients described by Eq. (17) are
consistent with the commonly used expressions described by Eq. (7) in Section 2.2. However, the
physical meaning in this derivation is clearer and simpler. In Eq. (16), the change of the fluid force
component f, is exactly the relative force change in the direction of e, due to the small
perturbation, and the change of the fluid force component f, is exactly the relative force change in
the direction of ey due to the small perturbation.

4. Verification and discussion

In this section, as an example, the definitions of stiffness and damping coefficients described by
Egs. (16) and (17) are applied to infinitely short bearing. Assuming that the short bearing theory
with half-Sommerfeld boundary conditions applies [5], the fluid forces in the journal bearing are

[6]
2¢? (a) 2(}5) ( + 2¢ )
e 1=a =]

fo= (18)



506 J. K Wang, M.M. Khonsari | Journal of Sound and Vibration 290 (2006) 500-507
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202 ﬂhﬂ¥ﬁ+u_§f‘ (19)

fo=

Substituting Egs. (18) and (19) into Egs. (17) and simplifying the resulting expressions, it can be
shown that elements of the linearized stiffness matrix k;; (i,j = ¢, ¢) are

B 20uRL3e(1 + &%)
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The elements of the damping matrix by; (i,j = ¢, ¢) are
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stiffness coefficients and damping coefficients can be normalized. It has been shown that the
normalized expressions for the stiffness and damping coefficients are consistent with those in Refs.
[1,2]. However, if the definitions described by Egs. (3) and (4) are applied to the same infinitely
short bearing theory, k.4 = 0 and kg4 = 0 since both of the fluid force components f, and f ¢ are
not an explicit function of ¢.

5. Conclusion

The derivations presented in this paper offer a simple procedure for arriving at the definitions of
the stiffness and damping coefficients in polar coordinates. The method also offers a clear physical
meaning of the dynamic coefficient and yields consistent results when applied to infinitely short
bearings.
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