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Abstract

A general derivation for obtaining bearing dynamic coefficients in polar coordinates is presented. It is
shown that this derivation is simple and consistent with the commonly used formulae for the linearized
stiffness and damping coefficients. What is more important is that the physical meaning of this derivation is
clearer and simpler.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The existing definitions of the linearized stiffness and damping coefficients in polar coordinates
are derived from the Taylor series expansions of the radial component fe and tangential
component ff of the fluid force f (Fig. 1) and neglecting higher than first order terms. There are
two commonly used approaches for arriving at definitions of these coefficients (see Section 2).
However, they lead to inconsistencies in the final expressions for the stiffness and damping
coefficients. Especially, when applied to infinitely short bearings, the inconsistencies become so
obvious.
This paper presents a more general and straightforward derivation of bearing stiffness and

damping coefficients in polar coordinates. The final expressions for the stiffness and damping
coefficients are consistent with those in both Refs. [1,2].
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

bij damping coefficients of fluid film bearing,
N s/m, ði; j ¼ �;fÞ (i is the direction of
the force, j is the direction of the speed)

b̄ij
ðC=RÞ3

mL
bij ði; j ¼ �;fÞ

C radial clearance, m
fe radial component of the fluid force, N
ff tangential component of the fluid force,

N
kij stiffness coefficients of fluid film bear-

ing, N/m, ði; j ¼ �;fÞ (i is the direction
of the force, j is the direction of the
displacement)

k̄ij
ðC=RÞ3

moL
kij ði; j ¼ �;fÞ

L bearing length, m
Ob center of the journal bearing
Oj center of the journal
R journal radius, m
t time, s
x the coordinate in the horizontal direc-

tion
y the coordinate in the vertical direction
m lubricant viscosity, Pa s
o running speed of the rotor, rad/s
e eccentricity ratio
f attitude angle
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2. Existing inconsistencies between two kinds of existing definitions

Fig. 1 shows the sketch of the decomposition of the fluid force in journal bearing.
In Fig. 1, Ob is the center of the bearing; Ojs is the steady-state equilibrium position of the

journal center; Oj is the dynamic position of the journal center; e and f are the eccentricity ratio
and attitude angle of the journal center, respectively; subscript s represents the steady-state
equilibrium position; C is the radial clearance; fe and ff are the radial and tangential components
of the fluid forces f in journal bearing; x and y are the coordinates in the horizontal direction and
vertical direction, respectively; ee and ef are the unit vectors in radial and tangential directions,
respectively. Referring to Fig. 1, the fluid force f is

f ¼ f �e� þ f fef ¼ e� ef
h i f �

f f
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Fig. 1. Sketch of the decomposition of the fluid force in journal bearing.
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The two commonly used definitions mentioned in Section 1 are both based on the same Taylor
series expansions of the radial component and tangential component of the fluid force f separately
while neglecting higher than first-order terms as follows [1–3].

f � ¼ ðf �Þs þ
qf �
q�

qf �
qf

qf �
q_�

qf �

q _f

� � D�

Df

D_�

D _f

2
66664

3
77775,

f f ¼ ðf fÞs þ
@f f

@�

@f f

@f

@f f

@_�

@f f

@ _f

� � D�

Df

D_�

D _f

2
66664

3
77775.

The above equations can be written in the following form:

f � � ðf �Þs

f f � ðf fÞs

 !
¼

qf �
Cq�

qf �
C�qf

qf f

Cq�

qf f

C�qf

2
6664

3
7775

CD�

C�Df

 !
þ

qf �
Cq_�

qf �

C�q _f
qf f

Cq_�

qf f

C�q _f

2
6664

3
7775

CD_�

C�D _f

 !
, (2)

where all the first-order derivatives are evaluated at the steady-state equilibrium position
(es, fs).
2.1. Direct deduction of the stiffness and damping coefficients

One of the approaches in the existing literature arrives at the definition of the stiffness
coefficients (kij) and damping coefficients (bij) from the Taylor series expansions—Eq. (2)—
directly [3]:

f � � ðf �Þs

f f � ðf fÞs

 !
¼ �

k�� k�f

kf� kff

" #
CD�

C�Df

 !
�

b�� b�f

bf� bff

" #
CD_�

C�D _f

 !
, (3)

where

k�� k�f

kf� kff

" #
¼

�
qf �
Cq�

�
qf �

C�qf

�
qf f

Cq�
�

qf f

C�qf

2
6664

3
7775 and

b�� b�f

bf� bff

" #
¼

�
qf �
Cq_�

�
qf �

C�q _f

�
qf f

Cq_�
�

qf f

C�q _f

2
6664

3
7775. (4)



ARTICLE IN PRESS

J.K. Wang, M.M. Khonsari / Journal of Sound and Vibration 290 (2006) 500–507 503
2.2. Transformation approach for deriving the stiffness and damping coefficients

From Fig. 1, the following transformation is used [1,2]:

f 0�

f 0f

 !
¼

cosDf � sinDf

sinDf cosDf

 !
f �

f f

 !
, (5)

where f 0� is the component of the fluid force f in the same direction as the fluid force component
f�ð Þs at the steady-state equilibrium position, and f 0f is the component of the fluid force f in the
same direction as the fluid force component ff

� �
s
at the steady-state equilibrium position.

For a small perturbation, Df� 1, so that cos Df � 1, sin Df ¼ Df.
Using these two approximations, Eq. (5) can be rewriten as

f 0�

f 0f

 !
¼

f �

f f

 !
þ Df

�f f

f �

 !
.

Then, the following definitions of the stiffness and damping coefficients are developed [1,2].

f 0� � ðf �Þs

f 0f � ðf fÞs

 !
¼ �

k�� k�f

kf� kff

" #
CD�

C�Df

 !
�

b�� b�f

bf� bff

" #
CD_�

C�D _f

 !
, (6)

where

k�� k�f

kf� kff

" #
¼

�
qf �
Cq�

�
qf �

C�qf
þ

f f

C�

�
qf f

Cq�
�

qf f

C�qf
�

f �
C�

2
6664

3
7775 and

b�� b�f

bf� bff

" #
¼

�
qf �
C@_�

�
qf �

C�@ _f

�
qf f

Cq_�
�

qf f

C�q _f

2
6664

3
7775. (7)

2.3. Inconsistencies between two kinds of existing definitions

From Eqs. (4) and (7), it is very clear that some inconsistencies between the definitions of k�f
and kff exist. The second definitions of k�f and kff each has one more coupled term than does
the first set of equations presented in Section 2.1.

3. A new derivation of the definitions of stiffness and damping coefficients

Taking the derivative of both sides of Eq. (1) with respect to time t yields:

df

dt
¼

df �
dt

e� þ
df f

dt
ef þ f �

de�

dt
þ f f

def

dt
, (8)

where

df �
dt
¼

qf �
q�

d�

dt
þ

qf �
qf

df
dt
þ

qf �
q_�

d_�

dt
þ

qf �

q _f

d _f
dt
;

df f

dt
¼

qf f

q�
d�

dt
þ

qf f

qf
df
dt
þ

qf f

q_�
d_�

dt
þ

qf f

q _f

d _f
dt
:

(9)
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The derivatives of unit vectors e� and ef are [4]

de�

dt
¼

df
dt

ef;

def

dt
¼ �

df
dt

e�:
(10)

Substituting Eqs. (9) and (10) into Eq. (8) yields

df

dt
¼

qf �
q�

d�

dt
þ

qf �
qf

df
dt
þ

qf �
q_�

d_�

dt
þ
qf �

q _f

d _f
dt
�

df
dt

f f

 !
e�

þ
qf f

q�
d�

dt
þ

qf f

qf
df
dt
þ
qf f

q_�
d_�

dt
þ

qf f

q _f

d _f
dt
þ
df
dt

f �

 !
ef.

Simplifying further, we obtain

df

dt
¼ e� ef
h i qf �

q�
d�

dt
þ

qf �
qf
� f f

� �
df
dt
þ

qf �
q_�

d_�

dt
þ

qf �

q _f

d _f
dt

qf f

q�
d�

dt
þ

qf f

qf
þ f �

� �
df
dt
þ

qf f

q_�
d_�

dt
þ

qf f

q _f

d _f
dt

2
66664

3
77775. (11)

For a very short-time interval Dt when a small perturbation is applied to the journal that was in
steady-state equilibrium position �s;fs

� �
, Eq. (11) can be approximated as follows through

multiplying the two sides by Dt.

f � fs ¼ e� ef
h i qf �

q�
D�þ

qf �
qf
� f f

� �
Dfþ

qf �
q_�

D_�þ
qf �

q _f
D _f

qf f

q�
D�þ

qf f

qf
þ f �

� �
Dfþ

qf f

q_�
D_�þ

qf f

q _f
D _f

2
6664

3
7775. (12)

The fluid force at the steady-state equilibrium position �s;fs

� �
is

fs ¼ e� ef
h i f �

� �
s

f f

� �
s

2
4

3
5. (13)

Substituting Eqs. (1) and (13) into Eq. (12), yields

e� ef
h i f � � f �

� �
s

f f � f f

� �
s

2
4

3
5 ¼ e� ef

h i qf �
q�

D�þ
qf �
qf
� f f

� �
Dfþ

qf �
q_�

D_�þ
qf �

q _f
D _f

qf f

q�
D�þ

qf f

qf
þ f �

� �
Dfþ

qf f

q_�
D_�þ

qf f

q _f
D _f

2
6664

3
7775,
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i.e.,

f � � f �
� �

s

f f � f f

� �
s

2
4

3
5 ¼

qf �
q�

D�þ
qf �
qf
� f f

� �
Dfþ

qf �
q_�

D_�þ
qf �

q _f
D _f

qf f

q�
D�þ

qf f

qf
þ f �

� �
Dfþ

qf f

q_�
D_�þ

qf f

q _f
D _f

2
6664

3
7775. (14)

Rewriting Eq. (14), one arrives at the following equation:

f � � f �
� �

s

f f � f f

� �
s

2
4

3
5 ¼

qf �
Cq�

qf �
C�qf

�
f f

C�

qf f

Cq�

qf f

C�qf
�

f �
Cq

2
6664

3
7775

CD�

C�Df

" #
þ

qf �
Cq_�

qf �

C�q _f
qf f

Cq_�

qf f

C�q _f

2
6664

3
7775

CD_�

C�D _f

" #
. (15)

Now, the stiffness and damping coefficients can be defined as follows:

f � � f �
� �

s

f f � f f

� �
s

2
4

3
5 ¼ � k�� k�f

kf� kff

" #
CD�

C�Df

" #
�

b�� b�f

bf� bff

" #
CD_�

C�D _f

" #
, (16)

where

k�� k�f

kf� kff

" #
¼

�
qf �
Cq�

�
qf �

C�qf
þ

f f

C�

�
qf f

Cq�
�

qf f

C�qf
�

f �
C�

2
6664

3
7775 and

b�� b�f

bf� bff

" #
¼

�
qf �
Cq_�

�
qf �

C�q _f

�
qf f

Cq_�
�

qf f

C�q _f

2
6664

3
7775 (17)

The final expressions for the stiffness and damping coefficients described by Eq. (17) are
consistent with the commonly used expressions described by Eq. (7) in Section 2.2. However, the
physical meaning in this derivation is clearer and simpler. In Eq. (16), the change of the fluid force
component fe is exactly the relative force change in the direction of ee due to the small
perturbation, and the change of the fluid force component ff is exactly the relative force change in
the direction of ef due to the small perturbation.
4. Verification and discussion

In this section, as an example, the definitions of stiffness and damping coefficients described by
Eqs. (16) and (17) are applied to infinitely short bearing. Assuming that the short bearing theory
with half-Sommerfeld boundary conditions applies [5], the fluid forces in the journal bearing are
[6]

f � ¼ �
RL3m

2C2

2�2 o� 2 _f
� �
1� �2ð Þ

2
þ

p 1þ 2�2
� �

_�

1� �2ð Þ
5=2

" #
, (18)
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f f ¼
RL3m

2C2

p o� 2 _f
� �

�

2 1� �2ð Þ
3=2
þ

4�_�

1� �2ð Þ
2

" #
. (19)

Substituting Eqs. (18) and (19) into Eqs. (17) and simplifying the resulting expressions, it can be
shown that elements of the linearized stiffness matrix kij ði; j ¼ �;fÞ are

k�� ¼
2omRL3�ð1þ �2Þ

C3 1� �2ð Þ
3

;

k�f ¼
pomRL3

4C3 1� �2ð Þ
3=2
;

kf� ¼ �
pomRL3ð1þ 2�2Þ

4C3 1� �2ð Þ
5=2

;

kff ¼
�omRL3

C3 1� �2ð Þ
2
:

(20)

The elements of the damping matrix bij ði; j ¼ �;fÞ are

b�� ¼
pmRL3ð1þ 2�2Þ

2C3 1� �2ð Þ
5=2

;

b�f ¼ �
2�mRL3

C3 1� �2ð Þ
2
;

bf� ¼ �
2�mRL3

C3 1� �2ð Þ
2
;

bff ¼
pmRL3

2C3 1� �2ð Þ
3=2
:

(21)

Using k̄ij ¼ C=R
� �3

=moL
� �

kij ; ði; j ¼ �;fÞ and b̄ij ¼ C=R
� �3

=mL
� �

bij ; ði; j ¼ �;fÞ, the linearized
stiffness coefficients and damping coefficients can be normalized. It has been shown that the
normalized expressions for the stiffness and damping coefficients are consistent with those in Refs.
[1,2]. However, if the definitions described by Eqs. (3) and (4) are applied to the same infinitely
short bearing theory, k�f � 0 and kff � 0 since both of the fluid force components f � and f f are
not an explicit function of f.
5. Conclusion

The derivations presented in this paper offer a simple procedure for arriving at the definitions of
the stiffness and damping coefficients in polar coordinates. The method also offers a clear physical
meaning of the dynamic coefficient and yields consistent results when applied to infinitely short
bearings.
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